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ABSTRACT
We study the fairness of dimensionality reduction methods for

recommendations. We focus on the established method of principal

component analysis (PCA), which identifies latent components and

produces a low-rank approximation via the leading components

while discarding the trailing components. Prior works have defined

notions of “fair PCA”; however, these definitions do not answer

the following question: what makes PCA unfair? We identify two

underlying mechanisms of PCA that induce unfairness at the item

level. The first negatively impacts less popular items, due to the fact

that less popular items rely on trailing latent components to recover

their values. The second negatively impacts the highly popular

items, since the leading PCA components specialize in individual

popular items instead of capturing similarities between items. To

address these issues, we develop a polynomial-time algorithm, Item-

Weighted PCA, a modification of PCA that uses item-specificweights

in the objective. On a stylized class of matrices, we prove that

Item-Weighted PCA using a specific set of weights minimizes a

popularity-normalized error metric. Our evaluations on real-world

datasets show that Item-Weighted PCA not only improves overall

recommendation quality by up to 0.1 item-level AUC-ROC but also

improves on both popular and less popular items.

1 INTRODUCTION
The growing prevalence of machine learning algorithms across

diverse fields motivates the importance of understanding the un-

derlying mechanisms that drive these algorithms’ decision-making

processes. Within this context, this paper focuses on a specific algo-

rithm: principal component analysis (PCA). We aim to understand

the downstream implications of this algorithm, centering on identi-

fying undesirable, systematic issues that may emerge with respect

to individuals who are impacted by the algorithm’s decisions. We

use the term “unfairness” to refer to such an issue, an issue that

induces a negative or undesirable impact on an individual or a

group of individuals.

PCA is a foundational technique for dimensionality reduction

which has been widely employed in many domains [13, 23]. PCA

extracts key features from datasets by projecting them onto prin-

cipal components, which reduces the dimension while preserving

critical information. PCA has many downstream applications, and

what type of “unfairness issues” exist will heavily depend on the

exact application. Therefore, we focus our work to one common

application of recommendation systems.

Recommendation systems and collaborative filtering. We use the

running example of the LastFM music platform, where users listen

to music by various artists (we refer to artists as items). In this con-

text, the goal of a recommendation system is to help users discover

artists that they would enjoy listening to. Collaborative filtering

(CF) is a popular approach for recommendations that relies on using

data on user-item preferences for a large number of users and find-

ing patterns within these preferences. Dimensionality reduction

methods, and PCA in particular, is a commonly used technique for

CF (e.g., [10, 17, 19]). This paper focuses on the impact of using

PCA for CF, and specifically, we focus on identifying unfairness

issues at the item-level.

Contributions. We identify mechanisms of the PCA algorithm

that can induce a negative effect for items in the context of recom-

mendations, and then we develop an approach that tackles these

unfairness mechanisms. We summarize our main contributions.

(1) We identify two mechanisms in which PCA may introduce an

undesirable item-level impact within the context of CF.

(a) The first mechanism is that the leading components

of PCA often lack meaningful information related to

less popular items. This may lead to fewer or worse-

quality recommendations with respect to these less pop-

ular items.

(b) The second mechanism is that in the existence of highly

popular items, the leading components of PCA can each

contain information about a single popular item, rather

than capturing similarities between items. Such com-

ponents are not useful for the sake of CF, as they do

not contain any “collaborative” information; this can ad-

versely impact the recommendations related to the highly

popular items.

We demonstrate both of thesemechanisms empirically through

the LastFM dataset, summarized in Figure 1, as well as theo-

retically on a stylized class of matrices.

(2) We propose a computationally efficient algorithm called Item-

Weighted PCA, which optimizes an objective function that

uses item-specific weights. The weights are given as input to

the algorithm, hence this algorithm provides a framework for

optimizing with any set of item-specific weights.

(a) In a stylized class of matrices where popular and un-

popular items are separated in a block-diagonal fashion,

we show that Item-Weighted PCA with a specific set of

weights minimizes the sum of normalized reconstruction

errors across the two blocks.

(b) We consider two natural benchmark algorithms, vanilla

PCA, as well as column-normalized PCA, which normal-

izes each column of thematrix before performing PCA. In

the stylized class of matrices, we show that both of these

benchmark algorithms are a special case of Item-Weighted

PCA with a specific set of weights. We then show that
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Figure 1: These figures are generated from computing vanilla PCA on the LastFM dataset for varying values of the rank 𝑟 .
Subfigure (A) shows the normalized item error as a function of the rank for six different artists, as well as the overall error in
the dotted line. Subfigure (B) shows the relationship between an artist’s popularity (weighted number of listeners) and the
number of principal components needed to half the initial item reconstruction error. Subfigure (C) shows the average diagonal
value of the projection matrix outputted by PCA, where artists are grouped by their popularity.

the approach of setting the weights to be inversely pro-

portional to an item’s norm is a interpolation between

the two benchmark algorithms. We use this weighting

procedure for all of our numerical experiments.

(3) We present empirical results demonstrating that our algorithm

yields improved collaborative filtering recommendations com-

pared to PCA baselines. Interestingly, we characterize how

our algorithm improves recommendation quality for both

popular and less popular artists.

We conclude with a discussion of limitations and recommended

use cases for our algorithm.

1.1 Relation to Fair PCA Literature
While we provide a more extensive literature review in Section 5,

we believe it is important to describe the connection of our work to

the existing literature that studies fairness in the context of PCA.

Brief summary of literature. The existing literature on fair PCA

can be summarized as imposing a fairness constraint on the PCA

problem and developing a new algorithm to satisfy this constraint.

Specifically, existing works assume that the set of users is parti-

tioned into pre-defined groups (e.g., race, gender). There are a series

of papers [15, 24, 26, 27] that define fairness as enforcing that the

reconstruction error across groups of users to be “balanced”, for

different definitions of balance. Alternatively, [21] defines the out-

put of a PCA algorithm as fair if the group label cannot be inferred

from the projected data, while [18] aims to minimize the difference

in the conditional distributions of the projected data.

Comparison to our work. Table 1 summarizes the differences

between our work and existing literature. One difference is that

prior works focus on user-level fairness with pre-defined groups,

whereas we focus on item-level fairness, with no reliance on group

labels.

However, there is also a major difference in the motivation of

our work compared to existing works that induce a distinction

in the types of situations that the works apply to. Specifically, the

methods from existing works address situations where an algorithm

designer knows, a priori, that they would like to enforce a certain

type of fairness constraint. That is, there is an external constraint

that deems a particular fairness notion necessary, and these fairness

constraints are generic, in the sense that they can be defined in a

general machine learning context.

On the other hand, the motivation of our work is to identify

unfairness issues that arise specifically from the PCA algorithm.

The issues that we identify are not generic machine learning issues,

and hence they would not necessarily be issues that one would be

concerned about a priori. Our work helps elucidate the black-box

nature of the PCA algorithm and contributes to situations where

one does not have a particular fairness notion in mind but would

like to understand what types of issues can arise from this specific

algorithm.

Analogs of this distinction appear in other areas. For example, in

prediction, the seminal work of [11] studies how to learn a classifier

with an external fairness constraint (equality of opportunity). In

contrast, [4, 16] also study fairness in prediction, but the goal is

to identify the reasons why bias may arise in a prediction setting,

rather than developing algorithms that satisfy a fairness notion.
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Algorithm User Item Labels Fairness Notion
Olfat and Aswani [21], Lee et al. [18] ✓ ✓ obfuscate group identifiability

Samadi et al. [26], Tantipongpipat et al. [27],

Kamani et al. [15], Pelegrina and Duarte [24]

✓ ✓ balance reconstruction error across groups

Item-Weighted PCA ✓ improve collaborative-filtering recommendations

Table 1: Comparison with existing papers studying fair PCA.

1.2 Background on PCA
Let 𝑋 ∈ R𝑛×𝑑 be a matrix of preferences over 𝑛 users and 𝑑

items. PCA applied to 𝑋 projects the matrix into a 𝑟 -dimensional

space yielding an approximation matrix 𝑋 , where 𝑟 ≪ 𝑑 is a user-

determined rank hyperparameter. Formally, PCA solves:

argmin

𝑃=𝑈𝑈𝑇

∥𝑋 − 𝑋𝑃 ∥2𝐹

s.t. 𝑈 ∈ R𝑑×𝑟 ,𝑈𝑇𝑈 = 𝐼𝑟

(1)

The optimization is over projection matrices 𝑃 = 𝑈𝑈𝑇
where the

columns of 𝑈 ∈ R𝑑×𝑟 form an orthonormal basis. The optimal

projection matrix 𝑃∗ minimizes the reconstruction error ∥𝑋 −𝑋 ∥2
𝐹

between the original matrix and the approximation, 𝑋 = 𝑋𝑃∗.
Note that the approximation matrix 𝑋 = 𝑋𝑃∗ is equivalent to

taking the 𝑟 -truncated Singular Value Decomposition (SVD) of 𝑋 .

Henceforth, when referring to collaborative filtering we refer to the

problem of identifying a suitable projection matrix 𝑃 = 𝑈𝑈𝑇
where

we refer to solution to Equation (1) as the vanilla PCA baseline.

2 UNFAIRNESS OF PCA FOR COLLABORATIVE
FILTERING

In this section, we begin with a motivating empirical example illus-

trating two mechanisms in which PCA exhibits unfairness towards

items for collaborative filtering. Then, we show that these mecha-

nisms provably occur in a stylized class of matrices that represent

user-item preferences.

2.1 Empirical Example: LastFM
Our motivating empirical example uses the lastfm-2k dataset [2]

which records the number of times a user of the LastFM
1
music

platform listened to their favorite artists. Specifically, if artist 𝑗 is

one of user 𝑖’s top 25 artists, then 𝑋𝑖 𝑗 is the number of times user

𝑖 listened to artist 𝑗 . Otherwise 𝑋𝑖 𝑗 = 0. We use a dataset with

𝑛 = 920 users and 𝑑 = 316 artists. To account for heterogeneity

in user listening volume we row-normalize the matrix. See the

Experiments section for a detailed description of this dataset. We

compute PCA on this matrix 𝑋 for all possible values of the rank 𝑟 ,

from 0 to 𝑑 . Let 𝑃𝑟 ∈ R𝑑×𝑑 be the projection matrix corresponding

to the output of PCA for rank 𝑟 .

We now describe two ways in which PCA induces unfairness

for the items (artists).

2.1.1 Mechanism 1: Unfairness for unpopular items. The overall
reconstruction error, ∥𝑋 − 𝑋𝑃𝑟 ∥2𝐹 decreases as 𝑟 increases in a

diminishing returns fashion: see the dashed grey line in Figure 1,

1
http://www.lastfm.com

Subfigure A. In fact, it can be shown that reconstruction error

decreases by exactly 𝜎2𝑟 at rank 𝑟 compared to 𝑟 − 1, where |𝜎1 | ≥
· · · ≥ |𝜎𝑑 | are the ordered singular values of 𝑋 (see Theorem 8 in

the Appendix).

However, this pattern of diminishing returns does not occur at

the individual item level. We define the normalized item error for

item 𝑗 as ∥𝑋. 𝑗 − 𝑋𝑃𝑟,. 𝑗 ∥2
2
/𝑊𝑗 , where 𝑋. 𝑗 is the 𝑗 ’th column of 𝑋 ,

𝑃𝑟,. 𝑗 is the 𝑗 ’th column of 𝑃𝑟 , and𝑊𝑗 = ∥𝑋. 𝑗 ∥2
2
is a normalizing

factor. Subfigure A in Figure 1 plots the normalized item error for

six individual artists (items), which displays the large heterogeneity

in how the errors decrease as a function of the rank. For each artist,

the normalized error is initially 1 when the rank is 0 since 𝑃 = 0,

and drops sharply after some threshold rank is reached, where this

threshold varies greatly by the artist. Certain artist such as Jessica

Simpson requires the rank to be over 200 before their normalized

error decreases below 80%.

In general, the leading components of PCA capture the artists

who are popular. Subfigure B in Figure 1 shows the relationship be-

tween artist popularity, where the popularity for artist 𝑗 is
∑𝑛
𝑖=1 𝑋𝑖 𝑗

following row normalization, and the number of principal compo-

nents needed to half the initial reconstruction error of ∥𝑋. 𝑗 ∥2
2
. The

Subfigure shows that leading principal components greatly reduce

reconstruction error for popular artists. The top-20% most popular

artists require 36 components, on average, to half their error while

the bottom 80% requires 147 of 316 components.

2.1.2 Mechanism 2: Unfairness for popular items. We now describe

a completely different mechanism that negatively impacts popular

items. The previous mechanism showed that the leading compo-

nents favor the popular items. However, we find that the leading

components can become specialized in individual items, which has

undesirable consequences in the context of collaborative filtering.

Recall that PCA outputs a projection matrix 𝑃 ∈ R𝑑×𝑑 . We claim

that it is undesirable for item 𝑗 for the diagonal entry, 𝑃 𝑗 𝑗 , to be

close to 1 at low values of 𝑟 , which is the case for popular artists as

seen in Subfigure C of Figure 1.

For an artist 𝑗 , the approximation of its listening count for user

𝑖 is 𝑋𝑖 𝑗 =
∑𝑑
𝑘=1

𝑋𝑖𝑘𝑃𝑘 𝑗 . Then, for an item 𝑘 ≠ 𝑗 , the entry 𝑃𝑘 𝑗 can

be interpreted as a “similarity” between items 𝑗 and 𝑘 . A non-zero

entry for 𝑃𝑘 𝑗 implies that the preference towards artist𝑘 contributes

to the reconstructed preference towards item 𝑗 .

Now, if it is the case that the diagonal entry is 1 (𝑃 𝑗 𝑗 = 1) and

𝑃𝑘 𝑗 = 0 for all𝑘 ≠ 𝑗 , we recover a perfect reconstruction (𝑋𝑖 𝑗 = 𝑋𝑖 𝑗 ).

However, this implies that the reconstructed preference of item 𝑗 is

simply the original preference towards item 𝑗 , which is not useful

information in the context of collaborative filtering. This does not

give us a way to infer whether a user will like item 𝑗 given their

preferences over other items. The diagonal entry 𝑃 𝑗 𝑗 being close

http://www.lastfm.com
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to 1 implies that most of the reconstructed value for 𝑋𝑖 𝑗 is coming

from 𝑋𝑖 𝑗 .

2.2 Theoretical Result
We demonstrate that PCA exhibits the above two phenomena in

a class of matrices that represent user-item preferences, where a

subset of items is highly popular. We consider a sequence of systems

of increasing size, where both the number of users and items is

growing. Concretely, consider a sequence of matrices {𝑋𝑛}𝑛≥1,
where 𝑋𝑛 ∈ {0, 1}𝑛×𝑑𝑛 and 𝑑𝑛 = 𝑜 (𝑛). The (𝑖, 𝑗)’th entry of 𝑋𝑛 is 1

if user 𝑖 likes item 𝑗 , and 0 otherwise.

We assume that the items can be partitioned into two classes:

popular items and unpopular items. We assume that the first 𝑀𝑛

items are the popular items for 𝑋𝑛 , for 𝑀𝑛 ≤ 𝑑𝑛 , that satisfy the

following assumption.

Assumption A (Popular items). Let 𝑋 ′
𝑛 ∈ {0, 1}𝑛×𝑑𝑛 be a copy

of 𝑋𝑛 where all entries in columns 𝑗 > 𝑀𝑛 are set to zero. Then, we

assume that the𝑀𝑛 ’th largest singular value of 𝑋 ′
𝑛 , which we denote

by 𝑠𝑀𝑛
(𝑋 ′

𝑛), grows as Ω(
√
𝑛).

Note that Assumption A is satisfied with high probability if all

entries of 𝑋 ′
𝑛 are i.i.d. mean zero subgaussian random variables

with unit variance; see Theorem 1.1 in Rudelson and Vershynin

[25] and Figure 6 in the Appendix for empirical validation.

Next, we assume that for unpopular items, the number of users

that like the item is a constant.

Assumption B (Unpopular items). There exists a constant 𝐾

such that for all 𝑛,
∑𝑛
𝑖=1 (𝑋𝑛)𝑖, 𝑗 ≤ 𝐾 for any 𝑗 > 𝑀𝑛 .

Then, we show that PCA on the matrix 𝑋𝑛 using the top 𝑀𝑛

principal components admits the two undesirable mechanisms. Let

𝐼𝑛,𝑀𝑛
∈ R𝑑 (𝑛)×𝑑 (𝑛) be the matrix where all entries are zero except

for the first𝑀𝑛 diagonal entries, which are 1.

Theorem 1. Let 𝑃𝑛 ∈ R𝑑𝑛×𝑑𝑛 be the projection matrix given

by performing PCA on matrix 𝑋𝑛 , taking the largest 𝑀𝑛 principal

components. Then, | |𝑃𝑛 − 𝐼𝑛,𝑀𝑛
| |𝐹 → 0 as 𝑛 → ∞.

Theorem 1 states that as the system gets large, the projection

matrix outputted by PCA with 𝑀𝑛 components converges to the

𝐼𝑛,𝑀𝑛
matrix. The projection matrix being 𝑃 = 𝐼𝑛,𝑀𝑛

demonstrates

both undesirable mechanisms. The proof makes use of the Davis-

Kahan theorem from perturbation theory, which can be found in

the Appendix.

Firstly, all columns 𝑗 > 𝑀𝑛 that represent the less popular items

are the 0 vector in the projection matrix; i.e. the projection does not

contain any information about item 𝑗 . Then, the reconstruction,

𝑋. 𝑗 will also be the 0 vector; that is, the reconstructed preference

of every user to every unpopular item is outputted to be 0.

Next, fix a popular item 𝑗 ≤ 𝑀𝑛 . Then, column 𝑗 of the projection

matrix approaches 𝑒 𝑗 , the unit vector with 1 in the 𝑗 ’th entry. Then,

the reconstruction of the preference of user 𝑖 for item 𝑗 , 𝑋𝑖 𝑗 , is

exactly 𝑋𝑖 𝑗 . That is, the reconstruction for the (𝑖, 𝑗)’th entry just

“reads” the value that was there in the original matrix. This provides

a perfect reconstruction, but this provides no useful information

in the context of collaborative filtering. The reconstruction only

provides non-zero values to entries that already existed in the

original matrix, which does not serve the purpose of using this

method as a recommendation tool. A projection matrix that is

useful for recommendations should contain many non-zero entries

for column 𝑗 : then, the preference of user 𝑖 towards item 𝑗 can be

inferred through the existing preferences of user 𝑖 towards other

items 𝑘 ≠ 𝑗 .

3 ITEM-WEIGHTED PCA
We propose an algorithm named Item-Weighted PCA that counters

the unfairness mechanisms introduced in the previous section. We

will formally state the problem we aim to solve and present Item-

Weighted PCA as an algorithm solving the problem. Then, on a

stylized class of matrices, we provide a theoretical justification for

this approach, and we also show that two baseline approaches are

a special case of Item-Weighted PCA.

3.1 Algorithm Description
3.1.1 Problem Statement. Let 𝑋 ∈ R𝑛×𝑑 be an input matrix, where

entries can be positive or negative and missing values are set to

zero, 𝑟 ≤ min{𝑛,𝑑} be a rank parameter, and 𝑆 ∈ {−1, 0, +1}𝑛×𝑑 be

the sign matrix of 𝑋 , where 𝑆𝑖 𝑗 = 1 for positive 𝑋𝑖 𝑗 , −1 for negative
𝑋𝑖 𝑗 , and 0 when 𝑋𝑖 𝑗 = 0. Let 𝑤 𝑗 ≥ 0 for 𝑗 ∈ [𝑑] be item-specific

weights. We aim to solve the following problem:

argmax

𝑃=𝑈𝑈 ⊤

𝑑∑︁
𝑗=1

𝑤 𝑗 ⟨𝑆. 𝑗 , 𝑋. 𝑗 ⟩ (2)

s.t. 𝑈 ∈ R𝑑×𝑟 , 𝑈𝑇𝑈 = 𝐼 (3)

where 𝑋𝑖 𝑗 =
〈
𝑋𝑖 ., 𝑃. 𝑗

〉
∀𝑖, 𝑗 .

Note that the weights 𝑤 𝑗 must be given as input. In all of our

experiments, we use the weights𝑤 𝑗 = 1/∥𝑆. 𝑗 ∥2 In Section 3.2, we

study a simple class of matrices where we specify how the weights

should be chosen.

3.1.2 Algorithm. We propose the algorithm Item-Weighted PCA,

which solves (2)-(3) by relaxing the feasible set. Instead of constrain-

ing to projection matrices 𝑃 = 𝑈𝑈𝑇
, Item-Weighted PCA relaxes to

optimize over positive semi-definite matrices (PSD) with bounded

trace and eigenvalues and solves for an extreme-point optimal so-

lution to the following Semi-Definite Program (SDP):

argmax

𝑃

𝑑∑︁
𝑗=1

𝑤 𝑗 ⟨𝑆. 𝑗 , 𝑋. 𝑗 ⟩ (4)

s.t. tr (𝑃) ≤ 𝑟, 0 ⪯ 𝑃 ⪯ 1 (5)

We observe that the set of PSD matrices with trace ≤ 𝑟 and eigen-

values ∈ [0, 1] is a superset of rank 𝑟 projection matrices. In the

Appendix, we prove that the extreme-point optimal solution Item-

Weighted PCA yields is indeed a projection matrix and thus solves

the original problem.

Theorem 2. Item-Weighted PCA is a polynomial-time algorithm

to solve the optimization problem of (2)-(3).

3.1.3 Discussion. We now describe the intuition and motivation

of this algorithm, and in Section 3.2, we provide a theoretical justi-

fication for a special class of matrices.
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Recall that vanilla PCA finds the projection matrix of rank 𝑟

that minimizes the overall reconstruction error, | |𝑋 − 𝑋𝑃 | |2
𝐹
. Then,

Item-Weighted PCA makes the following modifications to vanilla

PCA:

(a) We use the signmatrix 𝑆 of𝑋 , which discards themagnitude

of the original entries.

(b) The objective function uses item-specific weights,𝑤 𝑗 .

(c) Instead of minimizing reconstruction error between the

columns 𝑆. 𝑗 and 𝑋. 𝑗 , we maximize the inner products be-

tween the two vectors.

Modification (a). The motivation for (a) is a normalization of the

original matrix that aligns with the downstream goal of recommen-

dations, rather than reconstruction. That is, the goal of recommenda-

tions is to identify the (𝑖, 𝑗) pairs where user 𝑖 would enjoy item 𝑗 ,

rather than reconstructing the exact entries 𝑋𝑖 𝑗 . Because the entry

magnitudes often vary greatly across users and contain outliers,

using the sign matrix effectively introduces a normalization across

all entries.

Modification (b). The item-specific weights aim to address both

of the unfairness mechanisms. Suppose we use the weights𝑤 𝑗 =

1/∥𝑆. 𝑗 ∥2, which we use for all of our experiments. Since less pop-

ular items have a smaller norm, this normalization up-weights

these items, directly addressing the issue of unfairness towards less

popular items (Mechanism 1). Moreover, this normalization also

down-weights the significance of the highly popular items in the ob-

jective, which also addresses Mechanism 2. Recall that Mechanism

2 occurs when one of the components of PCA specializes in repre-

senting a single item. Since all items are effectively treated equally

in (2), if the number of components is small (i.e. rank is small), then

one cannot “afford” to dedicate one component to a single item – it

is more efficient if each component contained information about

multiple items.

Modification (c). Given modification (b), a natural alternative

objective would be to keep the same error metric as vanilla PCA

(square of entry-wise differences), with column-specific weights

𝑤 𝑗 , minimizing the least squares objective

∑𝑑
𝑗=1𝑤 𝑗 ∥𝑆. 𝑗 − 𝑋. 𝑗 ∥2

2
.

Unfortunately, this objective does not yield a computationally ef-

ficient method. The allure of the objective (2) is that it is linear in

𝑃 , which is not the case in the least squares objective; hence Theo-

rem 2 would not hold. Therefore, the motivation for (c) is strictly

for computational efficiency.

One interpretation of the 𝑤 𝑗 ⟨𝑆. 𝑗 , 𝑋. 𝑗 ⟩ term in the objective (2)

is an approximation to the cosine similarity between columns 𝑆. 𝑗

and 𝑋. 𝑗 . The exact cosine similarity would include an additional

1/∥𝑋. 𝑗 ∥2 term, hence using the exact cosine similarity would in-

corporate non-linearities into the objective, which would again be

undesirable.

Note that because of modification (c), the objective (2) does

not at all aim to reconstruct the original matrix 𝑋 . However, it

is possible to add constraints to enforce a small error if desired.

Suppose 𝐸𝑟 = | |𝑋PCA − 𝑋 | |2
𝐹
is the reconstruction error of the

vanilla PCA solution (which is the smallest possible reconstruction

error). Then, one can add a constraint to the optimization (2)-(3)

of the form | |𝑋 − 𝑋 | |2
𝐹
≤ (1 + 𝛼)𝐸𝑟 for some parameter 𝛼 > 0, so

that the reconstruction error of the output 𝑋 is at most a (1 + 𝛼)
factor of 𝐸𝑟 . In the Appendix, we show that Theorem 2 holds with

the added constraint.

3.2 Theoretical Result and Comparison with
Baseline Algorithms

We show that for a stylized class of matrices, Item-Weighted PCA

yields the optimal solution to a popularity-normalized loss function.

For the same class of matrices, we show that two baseline PCA algo-

rithms are instantiations of Item-Weighted PCAwith a specific set of

weights. We then instantiate Item-Weighted PCA with weights that

interpolate between the two baselines. In a specific setting, such an

instantiation of Item-Weighted PCA balances popular and unpopular

items, while the baselines offer two extremal solutions. The proofs

for all propositions and theorems are included in Appendix A.3.

3.2.1 Optimality of Item-Weighted PCA. As in Theorem 1, we con-

sider binary preference matrices 𝑋 ∈ {0, 1}𝑛×𝑑 in which there are

𝑑𝑝 popular items, corresponding to columns 𝐼𝑝 = {1, . . . , 𝑑𝑝 } and
𝑑𝑢 unpopular items, corresponding to columns 𝐼𝑢 = {𝑑𝑝 + 1, . . . , 𝑑}.

We make the following assumption on 𝑋 :

Assumption C (Exclusivity). Each user likes either only popular

items or only unpopular items.

Let B be the set of binary matrices that satisfy Assumption C.

By constraining users to like only one class of items, we ensure that

individual principal components correspond exclusively to either

popular or unpopular items.

In light of the imbalance in item popularities, given a matrix 𝑋 ,

we introduce the following objective function that normalizes item

reconstruction error by group popularity, quantified as the number

of ratings for all items in the group:

𝑙 (𝑃) =
(
∥𝑋𝑝 − 𝑋𝑝 ∥𝐹

∥𝑋𝑝 ∥𝐹

)
2

+
(
∥𝑋𝑢 − 𝑋𝑢 ∥𝐹

∥𝑋𝑢 ∥𝐹

)
2

where 𝑋 = 𝑋𝑃 (6)

In Equation (6), 𝑋𝑝 denotes a copy of 𝑋 with entries for all unpop-

ular items set to 0 and 𝑋𝑢 denotes a copy of 𝑋 with ratings for

popular items set to zero.

Theorem 3 (Item-Weighted PCA Optimality). For 𝑋 ∈ B,

Item-Weighted PCA yields the optimal solution for the popularity-

adjusted loss function in Equation (6) when 𝑤 𝑗 = ∥𝑋𝑝 ∥−2∀𝑗 ∈ 𝐼𝑝

and𝑤 𝑗 = ∥𝑋𝑢 ∥−2∀𝑗 ∈ 𝐼𝑢 .
Henceforth, we will call the weights in Proposition 3 the proper

weights𝑤 𝑗 .

Remark 1. For 𝑋 ∈ B, there is a closed-form solution to minimize

Equation 6 but for general 𝑋 there is not a closed-form solution.

3.2.2 Baseline Algorithms as a Special Case. We compare against

two baselines: vanilla PCA and column-normalized PCA which

scales each column of 𝑋 to be unit norm before performing vanilla

PCA. In the case of matrices in B, we can interpret vanilla PCA and

column-normalized PCA as specific instantiations of Item-Weighted

PCA given:

Assumption D (Constant Popularity). For all popular items,

there are 𝑛𝑝 users that like the item, and for all unpopular items, there

are 𝑛𝑢 users that like the item, where 𝑛𝑢 < 𝑛𝑝 .
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Proposition 4. For 𝑋 ∈ B and satisfying Assumption D, vanilla

PCA instantiates Item-Weighted PCA with 𝑤 𝑗 = 1 ∀𝑗 ∈ 𝐼𝑝 and

column-normalized PCA instantiates Item-Weighted PCA with𝑤 𝑗 =

𝑛−1𝑝 ∀𝑗 ∈ {1, . . . , 𝑑𝑝 } and𝑤 𝑗 = 𝑛
−1
𝑢 ∀𝑗 ∈ 𝐼𝑢 .

Placing the instantiations in the context of the proper weights

identified in Theorem 3, we see that vanilla PCA yields the proper

weights when 𝑑𝑢 =
𝑛𝑝
𝑛𝑢
𝑑𝑝 . Column-normalized PCA is optimal

when𝑑𝑝 = 𝑑𝑢 . As the baselines useweights that are not a function of

𝑑𝑝 , 𝑑𝑢 , which are generally unknown, the baselines are suboptimal

in minimizing Equation (6) in all other settings.

To show that Item-Weighted PCA provides a flexible framework,

we define an instantiation that interpolates between vanilla PCA

and column-normalized PCA. Let Interpolate-Item-Weighted PCA be

the instantiation in which𝑤 𝑗 =
√
𝑛𝑝 ∀𝑗 ∈ 𝐼𝑝 and𝑤 𝑗 =

√
𝑛𝑢 ∀𝑗 ∈ 𝐼𝑢

We now provide a concrete instance in which Interpolate-Item-

Weighted PCA balances popular and unpopular items while the

baselines yield extreme, undesirable outcomes. For the specific

example, we introduce an additional assumption:

Assumption E (Exponential Decay). 𝑋𝑇
𝑝 𝑋𝑝 and𝑋𝑇

𝑢 𝑋𝑢 are both

of rank 𝑟 and their respective eigenvalues decay exponentially such

that for each matrix, the 𝑖𝑡ℎ largest eigenvalue 𝜆𝑖 = 𝛽
−(𝑖−1)𝜆1, where

𝛽 > 1 and 𝑖 ≤ 𝑟 .
Theorem 5. For any binary preference matrix 𝑋 ∈ B satisfying

Assumption E, if
𝑛𝑢
𝑛𝑝

< 𝛽−2(𝑟−1) and 𝑑𝑢 =

√︃
𝑛𝑝
𝑛𝑢
𝑑𝑝 , then the leading

𝑟 vanilla PCA components are 𝑉𝑝 ; the leading 𝑟 column-normalized

PCA components are 𝑉𝑢 . For Interpolate-Item-Weighted PCA, half of

the leading components are in 𝑉𝑝 and the other half is in 𝑉𝑢 .

Theorem 5 states that when the popularity gap is large enough

and there are sufficiently many unpopular items, for a rank 𝑟 projec-

tion, vanilla PCA only reconstructs popular items whereas column-

normalized PCA only reconstructs unpopular items. Interpolate-

Item-Weighted PCA, on the other hand, reconstructs both popular

and unpopular items in parallel. We observe that the above con-

ditions mimic real-world settings in which there is a long tail of

unpopular items.

4 EXPERIMENTS
4.1 Datasets
LastFM. We use the lastfm-2k dataset of user listening counts in-

troduced in our motivating example where entry 𝑖 𝑗 is the number

of times user 𝑖 listened to artist 𝑗 if artist 𝑗 is one of user 𝑖’s top-25

most-listened artists, otherwise 𝑋𝑖 𝑗 = 0. We filter the dataset to

keep only artists with at least 50 top listeners and then users with

at least 20 listening counts among the remaining artists, leaving

a 920 × 316 matrix. We row normalize the listening counts for all

users.

MovieLens. We use the MovieLens-1M dataset in which users

provide ratings for movies on a scale from 1 − 5 [12]. To reduce the

number of movies while preserving the heterogeneity in interests,

we filter for the top 30 movies among all 17 genres, omitting dupli-

cates. We also filter for the top 2000 users in terms of the number

of ratings provided yielding a 2000 × 308 data matrix. To capture

the valence of the ratings, we re-map the original ratings of 1 − 5

to {−2,−1, 1, 2, 3}, respectively.

These two datasets cover both explicit feedback in the form of

user-provided ratings in the Movielens dataset as well as implicit

feedback in the form of listening counts in the LastFM dataset.

4.2 Evaluation Methodology
The goal of our evaluation is to assess whether our Item-Weighted

PCA improves recommendations from the item perspective. As

such, we introduce the following methodology: given a data matrix

𝑋 ∈ R𝑛×𝑑 in which missing values are set to zero, we execute

Item-Weighted PCA, yielding a 𝑑 × 𝑑 projection matrix 𝑃 of rank 𝑟 ,

which is a pre-determined integer rank budget. To test, for each

item, we use 𝑃 to classify all users as either “relevant" or “irrelevant"

to the item. To avoid accessing the true user ratings, let us define

𝑃 ′ as 𝑃 with the diagonal entries zeroed out. Then, for an item

𝑗 , the user scores are (𝑋𝑃 ′) 𝑗 . Zeroing out the diagonal forces the
recommendation to be based on the user’s ratings for items that are

similar to item 𝑗 other than item 𝑗 itself. For a given rank budget 𝑟 ,

the evaluation score is the average AUC over all items:

1

𝑑

𝑑∑︁
𝑖−1

AUC
(
𝑋𝑃 ′𝑗 , 𝑦 𝑗

)
(Item AUC-ROC)

In the above evaluation metric, 𝑦 𝑗 are the true binary labels and for

both datasets, we define 𝑦 𝑗 = 𝑋 𝑗 > 0. For Movielens this is defined

on the pre-processed ratings so a positive value corresponds with a

raw rating ≥ 3. We compare our method against vanilla PCA and

column-normalized PCA.
2

4.3 Results
We present four results from our evaluation: 1) Item-Weighted PCA

mitigates leading components specializing in individual items; 2)

At the item level, Item-Weighted PCA improves the classification

of relevant users from less relevant users following projection; 3)

The performance gains are observed at every item popularity level;

4) Compared to vanilla PCA, Item-Weighted PCA is more robust to

uniformly randomly missing data.

4.3.1 Reduced Specialization. We previously illustrated a vanilla

PCA unfairness mechanism in which leading principal components

specialize in individual popular artists as evidenced by large diago-

nal entries in 𝑃𝑟 for low values of 𝑟 . In Figure 2, we show that the

average diagonal entries vary less by popularity in Item-Weighted

PCA (solid) than in vanilla PCA (dashed). The difference is most

noticeable in the reduction of diagonal entries corresponding to

high-popularity artists in LastFM.

4.3.2 Overall Performance. In aggregate across all users in the

LastFM and Movielens datasets, Item-Weighted PCA improves item-

level classification performance compared to vanilla PCA at all

rank budget values, as shown in Figure 3. In the figure, the y-

axis is the average value of our Item AUC-ROC metric across all

items. The curves for all algorithms decrease for large values of 𝑟

because our evaluation metric zeros out the diagonal, and for large

values of 𝑟 collaborative filtering is not needed as 𝑃 approaches the

identity matrix. The performance improvement is most noticeable

for LastFM, where Item-Weighted PCA also dominates the column

2
We ran all of our experiments in Python on a machine with Intel Xeon E5-2690 CPUs,

2.60 GHz, 30 MB of cache.
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Figure 2: Item-Weighted PCA (solid) reduces the unfairness
mechanism identified in vanilla PCA (dashed) in which lead-
ing components specialize in individual items. High diagonal
entries suggest specialization.

normalization baseline, especially for 𝑟 ∈ [50, 250]. For Movielens,

normalizing the columns performs comparably with our algorithm.

4.3.3 Performance by Item Popularity. Item-Weighted PCA is able

to increase user classification performance for all item popularity

groups instead of increasing performance for one group at the

expense of another. Figure 4 shows that the user-classification

performance increased for all popularity groups relative to vanilla

PCA. The popularity groups were defined to approximately be of

equal size.

The collective benefit illustrates the limitations of vanilla PCA.

The recommendation quality for high-popularity items is lowest

in vanilla PCA for both datasets because these items rely heavily

on the diagonal values of the projection matrix and rely less on

item similarities. By limiting the focus on any individual item, the

overall item-level similarities captured in 𝑃 are improved which

benefits items of all popularity levels.

4.3.4 Robustness to Missing Data. We also assess our algorithm’s

robustness to missing data. In Figure 5, we plot the recommendation

performance as training data points are gradually set to 0, where

𝛼 is the fraction of training data points that have been uniformly

randomly removed, for a fixed value of 𝑟 = 106. In the case of

LastFM, our algorithm outperforms both baselines for 𝛼 < 0.6.

Whereas for MovieLens, our algorithm is not as robust as column

normalization, though all three algorithms perform similarly for

all values of 𝛼 . We chose to fix 𝑟 = 106 because our algorithm

outperforms the baselines in Figure 3 when all data are available.

In the Appendix, we include robustness results for all values of 𝑟 .
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Figure 3: For both LastFM andMovielens, Item-Weighted PCA,
improves the ability for collaborative filtering to identify
relevant listeners for each artist.

5 RELATEDWORK
5.1 Fair PCA
We provide further background on past fair PCA works that bal-

ance the reconstruction errors across groups of users [15, 24, 26, 27].

Many existing approaches solve a convex optimization problem

of the following structure: let 𝑋𝑔 denote the sub-matrix of 𝑋 com-

prising of all individuals in group 𝑔 ∈ {1, 2, · · · ,𝐺}, 𝑓𝑃 be the re-

construction error using projection matrix 𝑃 , 𝐴 be an aggregation

function, and𝑈 be an 𝑛×𝑟 matrix with orthonormal columns; then,

existing fair PCA algorithms can be generalized as:

argmin

𝑃=𝑈𝑈𝑇

𝐴 (𝑓𝑃 (𝑋1) , 𝑓𝑃 (𝑋2) , · · · , 𝑓𝑃 (𝑋𝐺 )) (7)

By considering the reconstruction error of individual groups, exist-

ing fair PCA algorithms can ensure more balanced approximation

quality. Common instances of the aggregation function 𝐴 are the

max function or the product function

∏𝐺
𝑔=1 𝑓𝑃

(
𝑋𝑔

)
. A cost of the

above convex optimization approach is that the solution projection

matrix is not guaranteed to be of rank 𝑟 , where the rank increase

is a function of the number of groups. More recent work has also

presented non-convex optimization methods [18].
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Figure 4: Item-Weighted PCA (solid) is able to improve rec-
ommendation performance for items of all popularity levels
relative to vanilla PCA (dashed). The improvement arises
from projection matrices that better capture item similari-
ties for collaborative filtering.

5.2 Trustworthy Recommender Systems
Fairness in the context of recommender systems and rankings has

frequently been posed as a two-sided problem, balancing the inter-

ests of users and items/producers [6, 22]. On the user side, fairness

definitions typically center on user utility either at the group level,

defined by demographics [8], or at more granular levels, such as the

notion of envy-freeness [7, 14], which states that no user should

prefer another user’s recommendations. In contrast, our work is

more connected to notions of item fairness which are defined in

terms of item exposure [3].

Additional prior work has focused on improving long-tail rec-

ommendations. Because many recommendation datasets feature a

large number of items but a small number of highly popular “head"

items, recommender systems are prone to popularity bias in dispro-

portionately recommending popular items [20]. Over time this can

lead to a “rich getting richer" effect, which is undesirable because

many of the unpopular “tail" items may be desirable [9]. While

many trustworthy recommender systems works are focused on

introducing new exposure to unpopular items, our work is more

focused on preserving existing preferences for less popular items.

6 LIMITATIONS
We discuss several known and potential limitations of our algo-

rithm Item-Weighted PCA. First, the SDP has a runtime complexity
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Figure 5: The above charts show the robustness of the PCA
algorithms as training examples are gradually removed at a
fixed value of 𝑟 = 106. 𝛼 is the fraction of training examples
that are removed (set to zero). Item-Weighted PCA is more
robust than both baselines for LastFM and performs compa-
rably with the baselines for MovieLens.

of O
(
𝑑6.5

)
[1], which means that Item-Weighted PCA can be pro-

hibitively slow for large values of 𝑑 . Second, it is possible that

Item-Weighted PCA can overfit the input matrix in cases where the

solution matrix is used to project out-of-sample matrices. Last, com-

pared to vanilla PCA, the projection components are not ordered,

so it is not possible to deduce 𝑃𝑟 from 𝑃𝑟+1.

7 CONCLUSION
By analyzing within the context of collaborative filtering and rec-

ommender systems, we identify two mechanisms of unfairness in

PCA. First, information relevant to less popular items is lacking

in the leading components. Second, the leading components spe-

cialize in individual popular items instead of capturing similarities

between items. These mechanisms arise from heterogeneity in item

popularities and do not require external group labels to analyze.

We illustrate the consequences of these mechanisms in a motivat-

ing real-world example and show that the mechanisms provably

occur in a stylized setting. To mitigate unfairness, we introduce an

algorithm, Item-Weighted PCA, that is designed to preserve user

preferences for both popular and less popular items. Item-Weighted

PCA is optimal in a stylized setting and our evaluations show that

Item-Weighted PCA not only improves recommendations in aggre-

gate but benefits both popular and less popular items.
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A PROOFS
A.1 Proof of Theorem 1
Let 𝑋 ′

𝑛 ∈ {0, 1}𝑛×𝑑𝑛 be a copy of 𝑋𝑛 where all entries in columns

𝑗 > 𝑀𝑛 are set to zero. We will show that the projection matrix

corresponding to performing PCA on 𝑋𝑛 is close to the projection

matrix of PCA on 𝑋 ′
𝑛 .

Let 𝐶𝑛 = 𝑋⊤
𝑛 𝑋𝑛 and 𝐶′

𝑛 = 𝑋 ′⊤
𝑛 𝑋 ′

𝑛 . Let 𝑈𝑛,𝑈
′
𝑛 ∈ R𝑑𝑛×𝑀𝑛

be the

matrix whose columns correspond to the 𝑀𝑛 normalized eigen-

vectors corresponding to the𝑀𝑛 largest eigenvalues of 𝐶𝑛 and 𝐶′
𝑛

respectively.

Claim 6. 𝑈 ′
𝑛𝑈

′⊤
𝑛 = 𝐼𝑛,𝑀𝑛

Proof of Claim 6. Let 𝑌𝑛 ∈ R𝑀𝑛×𝑀𝑛
correspond to the top-left

block of 𝐶′
𝑛 . Let 𝑉𝑛 ∈ R𝑀𝑛×𝑀𝑛

have columns that are the eigen-

vectors of 𝑌𝑛 , where 𝑉𝑛 is orthonormal (since 𝑌𝑛 is symmetric).

Therefore, 𝑉𝑛𝑉
⊤
𝑛 = 𝐼𝑀𝑛

is the identify matrix. Now, 𝐶′
𝑛 is simply

𝑌𝑛 in its top left block, and all other entries are 0. Therefore, if

𝑣 ∈ R𝑀𝑛
is an eigenvector of 𝑌𝑛 , then the vector 𝑣 padded with

zeros, (𝑣, 0, . . . , 0) ∈ R𝑑 is an eigenvector of 𝐶′
𝑛 . Therefore, each

column of𝑈 ′
𝑛 is simply an eigenvector 𝑣 of 𝑌𝑛 , padded with 0’s to

make it a length 𝑑 vector. The other eigenvectors of 𝐶′
𝑛 that do not

have this form are the ones whose corresponding eigenvalue is 0,

since 0 is an eigenvalue of 𝐶′
𝑛 with multiplicity 𝑑𝑛 −𝑀𝑛 . ■

Now, we use a variant of the Davis-Kahan theorem [5] from Yu

et al. [28]. Using the notation in Theorem 2 in Yu et al. [28], we

let 𝑟 = 1 and 𝑠 = 𝑀𝑛 . Then, using the fact that | | sinΘ(𝑈 ,𝑈 ′) | |𝐹 =
1√
2

| |𝑈𝑈⊤ −𝑈 ′𝑈 ′⊤ | |𝐹 ,

| |𝑈𝑈⊤ − 𝐼𝑛,𝑀𝑛
| |𝐹 ≤ 2

√
2 | |𝐶 −𝐶′ | |𝐹
𝜆𝑀𝑛

(𝐶′) , (8)

where 𝜆𝑀𝑛
(𝐶′) is the 𝑀𝑛 ’th largest eigenvalue of 𝐶′

. Since all of

the less popular items satisfy Assumption B, every entry in𝐶−𝐶′
is

upper bounded by 𝐾 . Therefore, | |𝐶 −𝐶′ | |𝐹 ≤ 𝑑𝑛𝐾 . Next, since the
eigenvalues of 𝐶′

correspond to the square of the singular values

of 𝑋 ′
𝑛 , and since 𝑠𝑀𝑛

(𝑋 ′
𝑛) = Ω(

√
𝑛), we have that 𝜆𝑀𝑛

(𝐶′) = Ω(𝑛).
Therefore, | |𝑃𝑛 − 𝐼𝑛,𝑀𝑛

| |𝐹 = 𝑂 (𝑑𝑛𝐾/𝑛), which approaches 0 as

𝑛 → ∞ since 𝑑 = 𝑜 (𝑛) and 𝐾 is a constant. □

A.2 Proof of Theorem 2
To prove the theorem, we must show that extreme-point optimal so-

lutions to the convex relaxation in Equations (4)-(5) (Item-Weighted

PCA()) are optimal solutions for the problem statement in Equations

(2)-(3) (the “original problem").

The relaxation in Item-Weighted PCA is over the feasible set.

Instead of optimizing over rank 𝑟 projection matrices 𝑃 = 𝑈𝑈𝑇
,

Item-Weighted PCA optimizes over PSD matrices with bounded

eigenvalues and trace. Observe that any optimal solution to the

problem posed in the original problem is a feasible solution for

Item-Weighted PCA.

Claim 7. Any optimal solution 𝑃∗ to the original problem is a

feasible solution for Item-Weighted PCA.

Proof. The optimal solution 𝑃∗ is a projection matrix that can

be factorized as 𝑃∗ = 𝑈 ∗𝑈 ∗𝑇
. This factorization is also the eigende-

composition of the matrix where the eigenvalues are 1 with multi-

plicity 𝑟 and 0 with multiplicity 𝑑 − 𝑟 . Since the trace of a matrix is

the sum of its eigenvalues, the trace constraint tr(𝑃∗) = 𝑟 in Item-

Weighted PCA is satisfied. Further since all eigenvalues are ∈ [0, 1]
the eigenvalue constraints 0 ⪯ 𝑃∗ ⪯ 𝐼𝑑 are also satisfied. □

Now, we can prove the theorem if we can show that an extreme-

point optimal solution to Item-Weighted PCA satisfies two properties

(i) can be expressed as𝑈𝑈𝑇
where𝑈𝑇𝑈 = 𝐼𝑟 and (ii) can be found

in polynomial time.

To show (i) we utilize the definition of an extreme point. An

extreme point of a convex set is a point that is not a linear com-

bination of two other points in the convex set. For the convex set

defined in (5), an extreme point must have eigenvalues of 0 and 1.

Suppose there is an extreme point 𝑃 ′ =
∑𝑑
𝑖=1 𝜆𝑖𝑢𝑖𝑢

𝑇
𝑖
where there

exists a single fractional 𝜆𝑖′ ∈ (0, 1). Then it is possible to define

𝑃 ′ as the linear combination (average) of the matrices 𝑃 ′ + 𝜖𝑢𝑖′𝑢𝑇𝑖′
and 𝑃 ′ − 𝜖𝑢𝑖′𝑢𝑇𝑖′ where 𝜖 ≤ 𝜆𝑖′ ≤ 1− 𝜖 . Note that when there is one

fractional eigenvalue, the trace constraint is not tight since 𝑟 is an

integer, thus 𝑃 ′ + 𝜖𝑢𝑖′𝑢𝑇𝑖′ is a feasible matrix.

If there are two or more fractional eigenvalues the matrix also

cannot be an extreme point. Let 𝜆1, 𝜆2 ∈ (0, 1). Then we define 𝑃 ′

as the average of two matrices: 𝑃 ′ + 𝜖1𝜆1𝑢1𝑢𝑇
1
− 𝜖2𝜆2𝑢2𝑢𝑇

2
and 𝑃 ′ −

𝜖1𝜆1𝑢1𝑢
𝑇
1
+𝜖2𝜆2𝑢2𝑢𝑇

2
where 𝜖1𝜆1 = 𝜖2𝜆2. Note that the perturbations

does not affect the trace of the matrix so the perturbed matrices

are feasible even if the trace constraint is tight for 𝑃 ′.
Now, since all eigenvalues of extreme points for Item-Weighted

PCA are 0 or 1 and the trace is the sum of eigenvalues, the rank of

an extreme point is at most 𝑟 to satisfy the trace constraint. Thus,

an extreme point of Item-Weighted PCA can be eigendecomposed

as𝑈𝑈𝑇
where𝑈𝑇𝑈 = 𝐼𝑟 .

To show (ii) we utilize Theorem 1.8 from Tantipongpipat et al.

[27] which states that for SDPs with a linear objective function,

𝑚 linear (in)equality constraints, and eigenvalue constraints in

Equation 5 an extreme-point optimal solution can be found in

polynomial time.

Last we discuss the addition of an optional linear reconstruction

error constraint and show that Item-Weighted PCA yields a projec-

tion matrix of rank at most 𝑑 . From Theorem 1.8 in Tantipongpipat

et al. [27], we have that all extreme point optimal solutions have

rank at most 𝑟 and can be found in polynomial time.

To show that an extreme point optimal solution is a projection

matrix we must again show that the eigenvalues are integer. We

prove by contradiction: consider an extreme point optimal solution

𝑃 ′ =
∑𝑑
𝑖=1 𝜆𝑖𝑢𝑖𝑢

𝑇
𝑖
where there exists a single fractional eigenvalue

𝜆𝑖′ . We can show that such a point cannot be optimal because setting

𝜆𝑖′ = 1 would be feasible and improve the objective. The objective

function can be written as a linear combination of the eigenvalues

of 𝑃 ′:
∑𝑑
𝑖=1 𝑐𝑖𝜆𝑖 . 𝑐𝑖′ must be positive, otherwise 𝑃 ′ −𝜆𝑖′𝑢𝑖′𝑢𝑇𝑖′ would

have a higher objective value. Thus increasing 𝜆𝑖′ increases the
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objective. Setting to 1 also decreases the reconstruction error given

that the increase of any eigenvalue decreases reconstruction error.

And the perturbed matrix 𝑃 ′ + (1 − 𝜆𝑖′ ) 𝑢𝑖′𝑢𝑇𝑖′ is feasible for the

integer trace constraint given that the trace of 𝑃 ′ is at most 𝑟 +𝜆𝑖′−1.
If there are two fractional eigenvalues, the argument with 𝜖1 and

𝜖2 can again be used to show 𝑃 ′ is not an extreme point, where 𝜖1
and 𝜖2 are defined to preserve reconstruction error. □

A.3 Proofs for Item-Weighted PCA Analysis
A.3.1 Theorem 3.

Proof. Let us re-write the normalized reconstruction error for

𝑋𝑝 in terms of a trace:(
∥𝑋𝑝 − 𝑋𝑝 ∥𝐹

∥𝑋𝑝 ∥𝐹

)
2

=

( ∥𝑋𝑝 − 𝑋𝑝𝑃 ∥𝐹
∥𝑋𝑝 ∥𝐹

)
2

(9)

= ∥
𝑋𝑝

∥𝑋𝑝 ∥𝐹
−

𝑋𝑝

∥𝑋𝑝 ∥𝐹
𝑃 ∥2𝐹 (10)

= ∥
𝑋𝑝

∥𝑋𝑝 ∥𝐹
∥2 − Tr

(
𝑋𝑇
𝑝 𝑋𝑝

∥𝑋𝑝 ∥2𝐹
𝑃

)
(11)

Observe that minimizing the normalized reconstruction error for

popular items is equivalent to maximizing Tr

(
𝑋𝑇
𝑝 𝑋𝑝

∥𝑋𝑝 ∥2𝐹
𝑃

)
. Repeating

the same process for unpopular items, Equation 6 becomes:

𝑙 (𝑃) = −Tr
(
𝑋𝑇
𝑝 𝑋𝑝

∥𝑋𝑝 ∥2𝐹
𝑃

)
− Tr

(
𝑋𝑇
𝑢 𝑋𝑢

∥𝑋𝑢 ∥2𝐹
𝑃

)
+𝐶 (12)

Where 𝐶 is a constant.

Now, we show that instantiating Item-Weighted PCA with the

weights stated in the Theorem is equivalent to minimizing Equa-

tion 12. After instantiation, the objective for Item-Weighted PCA is

equivalent to maximizing:

𝑑∑︁
𝑗=1

𝑤 𝑗

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
=

∑︁
𝑗∈𝐼𝑝

1

∥𝑋𝑝 ∥2𝐹

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
+

∑︁
𝑗∈𝐼𝑢

1

∥𝑋𝑢 ∥2𝐹

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
(13)

=
∑︁
𝑗∈𝐼𝑝

1

∥𝑋𝑝 ∥2𝐹

〈
𝑋. 𝑗 , 𝑋. 𝑗

〉
+

∑︁
𝑗∈𝐼𝑢

1

∥𝑋𝑢 ∥2𝐹

〈
𝑋. 𝑗 , 𝑋. 𝑗

〉
(14)

=
1

∥𝑋𝑝 ∥2𝐹
Tr

(
𝑋𝑇
𝑝 𝑋𝑝

)
+ 1

∥𝑋𝑢 ∥2𝐹
Tr

(
𝑋𝑇
𝑢 𝑋𝑢

)
(15)

Where for binary matrices 𝑆 = 𝑋 .

We have now shown that minimizing Equation 6, reformulated

as Equation 12, is equivalent to Item-Weighted PCA with the given

weights, which is equivalent to maximizing Equation 15. □

A.3.2 Proposition 4.

Proof. Vanilla PCA maximizes Tr

(
𝑋𝑇𝑋𝑃

)
. We can re-write

the trace as the dot product ⟨𝑋,𝑋𝑃⟩. Since 𝑋 = 𝑆 for binary ma-

trices, vanilla PCA maximizes

〈
𝑆, 𝑋

〉
, which is exactly equal to

Item-Weighted PCA instantiated with𝑤 𝑗 = 1∀𝑗 ∈ [𝑑].

For column normalization, we will show that instantiating Item-

Weighted PCA with the given weights is equivalent to column nor-

malization.∑︁
𝑗∈𝐼𝑝

1

𝑛𝑝

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
+

∑︁
𝑗∈𝐼𝑢

1

𝑛𝑢

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
(16)

=
∑︁
𝑗∈𝐼𝑝

1

𝑛𝑝

〈
𝑋. 𝑗 , 𝑋. 𝑗

〉
+

∑︁
𝑗∈𝐼𝑢

1

𝑛𝑢

〈
𝑋. 𝑗 , 𝑋. 𝑗

〉
(17)

=
1

𝑛𝑝

∑︁
𝑗∈𝐼𝑝

〈
𝑋. 𝑗 , (𝑋𝑃). 𝑗

〉
+ 1

𝑛𝑢

∑︁
𝑗∈𝐼𝑢

〈
𝑋. 𝑗 , (𝑋𝑃). 𝑗

〉
(18)

Observe that

∑
𝑗∈𝐼𝑝

〈
𝑋. 𝑗 , (𝑋𝑃). 𝑗

〉
is equal to Tr

(
𝑋𝑇
𝑝 𝑋𝑝𝑃

)
since

𝑋
(𝑖 𝑗 )
𝑝 = 0 ∀𝑗 ∈ 𝐼𝑢 . An analogous claim can be made for the sum

over unpopular columns. Thus, we have:∑︁
𝑗∈𝐼𝑝

1

𝑛𝑝

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
+

∑︁
𝑗∈𝐼𝑢

1

𝑛𝑢

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
(19)

=
1

𝑛𝑝

∑︁
𝑗∈𝐼𝑝

〈
𝑋. 𝑗 , (𝑋𝑃). 𝑗

〉
+ 1

𝑛𝑢

∑︁
𝑗∈𝐼𝑢

〈
𝑋. 𝑗 , (𝑋𝑃). 𝑗

〉
(20)

=
1

𝑛𝑝
Tr

(
𝑋𝑇
𝑝 𝑋𝑝𝑃

)
+ 1

𝑛𝑢
Tr

(
𝑋𝑇
𝑢 𝑋𝑢𝑃

)
(21)

= Tr

(
𝐷𝑋𝑇𝑋𝑃

)
(22)

Where 𝐷 is a diagonal matrix for which the first 𝑑𝑝 diagonal entries

are 𝑛−1𝑝 and the remaining diagonal entries are 𝑛−1𝑢 .

For column-normalized PCA, we take the vanilla PCA compo-

nents of 𝑋𝐷1/2
. Thus, column-normalized PCA is equivalent to

maximizing tr

(
𝐷1/2𝑋𝑇𝑋𝐷1/2𝑃

)
. We observe that because of As-

sumption C, 𝑋𝑇𝑋 is block diagonal and can be decomposed as

𝑋𝑇
𝑝 𝑋𝑝 + 𝑋𝑇

𝑢 𝑋𝑢 . Now we can write:

tr

(
𝐷1/2𝑋𝑇𝑋𝐷1/2𝑃

)
(23)

= tr

(
𝐷1/2

(
𝑋𝑇
𝑝 𝑋𝑝 + 𝑋𝑇

𝑢 𝑋𝑢

)
𝐷1/2𝑃

)
(24)

= tr

(
𝐷1/2

(
𝑋𝑇
𝑝 𝑋𝑝

)
𝐷1/2 + 𝐷1/2

(
𝑋𝑇
𝑢 𝑋𝑢

)
𝐷1/2𝑃

)
(25)

Because of Assumption D, the last line can be written as:

tr

(
𝐷1/2

(
𝑋𝑇
𝑝 𝑋𝑝

)
𝐷1/2 + 𝐷1/2

(
𝑋𝑇
𝑢 𝑋𝑢

)
𝐷1/2𝑃

)
(26)

= tr

(
𝐷

(
𝑋𝑇
𝑝 𝑋𝑝

)
+ 𝐷

(
𝑋𝑇
𝑢 𝑋𝑢

)
𝑃

)
(27)

= Tr

(
𝐷𝑋𝑇𝑋𝑃

)
(28)

□

A.3.3 Theorem 5.

Proof. Observe that the objective for Item-Weighted PCA can

be re-written as:

𝑑∑︁
𝑗=1

𝑤 𝑗

〈
𝑆. 𝑗 , 𝑋. 𝑗

〉
=

𝑑∑︁
𝑗=1

𝑤 𝑗

〈
𝑋. 𝑗 , 𝑋. 𝑗

〉
(29)

= ⟨𝑋𝐷,𝑋𝑃⟩ (30)

= Tr

(
𝐷𝑋𝑇𝑋𝑃

)
(31)
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Where 𝐷 is a diagonal matrix and entry 𝐷 𝑗 𝑗 = 𝑤 𝑗 . Thus, the two

baselines and Interpolate-Item-Weighted PCA can we written in

terms of Equation 31 with varying definitions of 𝐷 .

Observe that the only difference between Equation 31 and the

standard PCA objective is the addition of the weight matrix𝐷 . Now,

we leverage Assumption C and 𝐷 to show that the weight matrix 𝐷

does not change the principal components but only their order. To

see this, let 𝑉 be the eigenvectors of 𝑋𝑇𝑋 . We can write 𝐷𝑉 = 𝑉𝐷

because for all entries 𝑖, 𝑗 such that 𝑉𝑖 𝑗 > 0, 𝐷𝑖𝑖 = 𝐷 𝑗 𝑗 . Thus, the

objective for Item-Weighted PCA becomes:

Tr

(
𝐷𝑋𝑇𝑋𝑃

)
= Tr

(
𝐷

(
𝑉 Σ𝑉𝑇

)
𝑃

)
(32)

= Tr

((
𝑉 (𝐷Σ)𝑉𝑇

)
𝑃

)
(33)

(34)

Σ is the diagonal matrix of eigenvalues. We can now see that the

eigenvectors are still 𝑉 but the eigenvalues are now scaled to 𝐷Σ.
Furthermore, the eigenvectors of𝑋𝑇𝑋 are {𝑉𝑝 ,𝑉𝑢 } given that𝑋𝑇𝑋

is block diagonal. In the below, let 𝜆𝑢
𝑖
be the 𝑖𝑡ℎ largest eigenvector

of 𝑋𝑇
𝑢 𝑋𝑢 and 𝜆

𝑝

𝑖
be the same for 𝑋𝑇

𝑝 𝑋𝑝 .

We can bound the sum of eigenvalues of 𝑋𝑇
𝑝 𝑋𝑝 as follows:

𝑟∑︁
𝑖=1

𝜆
𝑝

𝑖
= Tr

(
𝑋𝑇
𝑝 𝑋𝑝

)
(35)

= ∥𝑋𝑝 ∥2𝐹 (36)

= 𝑛𝑝𝑑𝑝 (37)

Analogous steps show that the sum of eigenvalues of 𝑋𝑇
𝑢 𝑋𝑢 equals

𝑛𝑢𝑑𝑢 . Now, we use Assumption E to establish the ratio between the

leading eigenvalues of the group covariance matrices:

𝜆
𝑝

1

(∑𝑟
𝑖=1 𝛽

−𝑖+1)
𝜆𝑢
1

(∑𝑟
𝑖=1 𝛽

−𝑖+1) =
𝑛𝑝𝑑𝑝

𝑛𝑢𝑑𝑢
(38)

𝜆
𝑝

1

𝜆𝑢
1

=
𝑛𝑝

𝑛𝑢

𝑑𝑝

𝑑𝑢
(39)

𝜆
𝑝

1

𝜆𝑢
1

=

√︂
𝑛𝑝

𝑛𝑢
(40)

(41)

Thus, all eigenvalues of 𝑋𝑇
𝑝 𝑋𝑝 are

√︃
𝑛𝑝
𝑛𝑢

times larger than the cor-

responding eigenvalue for 𝑋𝑇
𝑢 𝑋𝑢 .

In the case of Vanilla 𝑃𝐶𝐴, 𝐷 = 𝐼 . We can show that the largest

eigenvalue of𝑋𝑇
𝑢 𝑋𝑢 is still smaller than the smallest non-zero eigen-

value of 𝑋𝑇
𝑝 𝑋𝑝 :

𝜆
𝑝
𝑟 = 𝜆

𝑝

1
𝛽1−𝑟 (42)

= 𝜆𝑢
1

(√︂
𝑛𝑝

𝑛𝑢

)
𝛽1−𝑟 (43)

≥ 𝜆𝑢
1
𝛽𝑟−1𝛽1−𝑟 (44)

≥ 𝜆𝑢
1

(45)

Thus the 𝑟 largest eigenvalues correspond with 𝑉𝑝 .

On the other hand, we can show that when 𝐷𝑖𝑖 = 𝑛
−1
𝑝 ∀𝑖 ∈ 𝐼𝑝

and 𝐷𝑖𝑖 = 𝑛
−1
𝑢 ∀𝑖 ∈ 𝐼𝑢 , as in the case of column-normalized PCA,

the smallest re-scaled eigenvalue for 𝑋𝑇
𝑢 𝑋𝑢 will be larger than the

largest re-scaled eigenvalue of 𝑋𝑇
𝑝 𝑋𝑝

𝜆𝑢𝑟 𝑛
−1
𝑢 = 𝜆𝑢

1
𝛽𝑟−1𝑛−1𝑢 (46)

= 𝜆
𝑝

1

√︂
𝑛𝑢

𝑛𝑝
𝛽1−𝑟𝑛−1𝑢 (47)

=
𝜆
𝑝

1

𝑛𝑝

√︂
𝑛𝑝

𝑛𝑢
𝛽1−𝑟 (48)

≥
𝜆
𝑝

1

𝑛𝑝
𝛽𝑟−1𝛽1−𝑟 (49)

≥
𝜆
𝑝

1

𝑛𝑝
(50)

Thus, after re-scaling with column-normalized PCA all of the top 𝑟

eigenvectors will correspond with 𝑉𝑢 .

In the case of Interpolate-Item-Weighted PCA, the rescaled 𝑖𝑡ℎ

eigenvalue for 𝑋𝑇
𝑝 𝑋𝑝 will be:

1

√
𝑛𝑝
𝜆
𝑝

𝑖
=

1

√
𝑛𝑝

√
𝑛𝑝

√
𝑛𝑢
𝜆𝑢𝑖 (51)

=
1

√
𝑛𝑢
𝜆𝑢𝑖 (52)

Thus, the re-scaled eigenvalues for𝑋𝑇
𝑝 𝑋𝑝 exactly equal the rescaled

eigenvalues for 𝑋𝑇
𝑢 𝑋𝑢 . In taking the top 𝑟 eigenvectors, the final

set will contain one half from 𝑉𝑝 and another half from 𝑉𝑢 . □

A.4 Additional Proofs
Theorem 8. Let 𝑋 ∈ R𝑛×𝑑 , then the 𝑖𝑡ℎ principal component

reduces the reconstruction error by:

∥𝑋 − 𝑋𝑈𝑖−1𝑈𝑇
𝑖−1∥

2

𝐹 − ∥𝑋 − 𝑋𝑈𝑖𝑈𝑇
𝑖 ∥2𝐹 = 𝜎2𝑖

Where the columns of𝑈𝑖 are the leading 𝑖 principal components and

𝜎𝑖 is the 𝑖
𝑡ℎ

largest singular value of 𝑋 by magnitude.

Proof. The reconstruction error 𝑓 for a given projection matrix

𝑃 = 𝑈𝑈𝑇
can be re-written as:

𝑓 (𝑃) = ∥𝑋 − 𝑋𝑃 ∥2𝐹
= tr

(
(𝑋 − 𝑋𝑃)𝑇 (𝑋 − 𝑋𝑃)

)
= tr

(
𝑋𝑇𝑋 − 𝑋𝑇𝑋𝑃 − 𝑃𝑋𝑇𝑋 + 𝑃𝑋𝑇𝑋𝑃

)
= tr

(
𝑋𝑇𝑋

)
− tr

(
𝑋𝑇𝑋𝑃

)
− tr

(
𝑃𝑋𝑇

)
+ tr

(
𝑃𝑋𝑇𝑋𝑃

)
= tr

(
𝑋𝑇𝑋

)
− tr

(
𝑋𝑇𝑋𝑃

)
− tr

(
𝑋𝑇 𝑃

)
+ tr

(
𝑋𝑇𝑋𝑃𝑃

)
= tr

(
𝑋𝑇𝑋

)
− tr

(
𝑋𝑇𝑋𝑃

)
− tr

(
𝑋𝑇 𝑃

)
+ tr

(
𝑋𝑇𝑋𝑃

)
= tr

(
𝑋𝑇𝑋

)
− tr

(
𝑋𝑇𝑋𝑃

)
= tr

(
𝑋𝑇𝑋

)
− tr

(
𝑈𝑇𝑋𝑇𝑋𝑈

)
Vanilla PCA minimizes reconstruction error which is equivalent to

maximizing tr

(
𝑈𝑇𝑋𝑇𝑋𝑈

)
. The matrix 𝑋𝑇

is a symmetric matrix

that can be diagonalized as𝑉 Σ2𝑉𝑇
where the columns of𝑉 are the
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right singular vectors of 𝑋 and Σ is a diagonal matrix where the

diagonal values are the singular values of 𝑋 sorted by magnitude.

Maximizing tr

(
𝑈𝑇𝑋𝑇𝑋𝑈

)
, where the columns of𝑈 are orthonor-

mal then amounts to setting the columns of 𝑈 to be the leading

right singular vectors of 𝑋 . Now the reduction in reconstruction

error can be written as:

𝑓 (𝑃𝑖−1) − 𝑓 (𝑃𝑖 ) = tr

(
𝑈𝑇
𝑖 𝑋

𝑇𝑋𝑈𝑖

)
− tr

(
𝑈𝑇
𝑖−1𝑋

𝑇𝑋𝑈𝑖−1
)

= tr

(
𝑉𝑇
𝑖

(
𝑉 Σ2𝑉𝑇

)
𝑉𝑖

)
− tr

(
𝑉𝑇
𝑖−1

(
𝑉 Σ2𝑉𝑇

)
𝑉𝑖−1

)
=

𝑖∑︁
𝑗=1

𝜎2𝑗 −
𝑖−1∑︁
𝑗=1

𝜎2𝑗

= 𝜎2𝑖

□

B SUPPLEMENTAL FIGURES
B.1 Singular value scaling of Bernoulli matrices
We empirically check that Assumption A is satisfied for the class

of Bernoulli matrices used in Theorem 1.

We fix 𝑀 = 20, and vary 𝑛 from 100 to 100,000. For each item

𝑗 ∈ [𝑀], we draw a random number 𝑝 𝑗 ∈ [0.1, 1] uniformly, which

represents the Bernoulli parameter for item 𝑗 . Then, we draw a

matrix 𝑋 ∈ {0, 1}𝑛×𝑀 , where 𝑋𝑖 𝑗 ∼ Bernoulli(𝑝 𝑗 ) independently
for each 𝑖, 𝑗 . Then, we denote by 𝑠2

min
(𝑋 ) to be the smallest value of

the squared singular values of 𝑋 . For Assumption A to be satisfied,

it must be that 𝑠2
min

(𝑋 ) should scale linearly in 𝑛.

For one set of values of the Bernoulli parameters {𝑝 𝑗 } 𝑗=1,...,𝑀 ,

we draw the random matrix 𝑋 500 times, and we show the average

𝑠2
min

(𝑋 ) value as well as the 99’th percentile values in Figure 6. The

figure shows that the smallest squared singular value does indeed

increase linearly with high probability.
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Figure 6: The line corresponds to the average of the smallest
squared singular value of the random Bernoulli matrix 𝑋 .
The shaded region corresponds to the 1 and 99th percentile
values.
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0 50 100 150 200 250 300
Rank r

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

R
ob

us
tn

es
s t

o 
m

is
si

ng
 d

at
a

Impact of missing data for all r

Vanilla
Column Normalization
Item Preference

(b) MovieLens

Figure 7: We present robustness results introduced in Figure
5 for all values of 𝑟 . For a given value of 𝑟 , we summarize
the algorithm’s robustness by averaging the Item AUC-ROC
over all values of 𝛼 .

B.2 Robustness results for all values of r
To supplement Figure 5, we include robustness results for all values

of 𝑟 in Figure 7. For a given value of 𝑟 , we summarize each algo-

rithm’s performance by taking the average AUC-ROC for all values

of 𝛼 . Figure 7 shows that for the LastFM dataset, our algorithm

outperforms both baselines for 𝑟 > 50, not only 𝑟 = 100; also, for

MovieLens, our algorithm performs comparably with the baselines

for all values of 𝑟 .
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