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A Appendix

A.1 Synthetic Networks Below we specify the con-
figurations used to generate the synthetic networks used
in our experiments.

ER We utilize the erdos_renyi_graph generator in
the networkx package and call the generator twice with
the following parameters: (n = 5000,p = 0.002), (n =
5000, p = 0.004).

BA We utilize the barabasi_albert_graph gener-
ator in the networkx package and call the generator
twice with the following parameters: (n = 5000, m =
5), (n = 5000, m = 10).

BTER We generated the BTER graphs using
the Matlab FEASTPACK software package which was
downloaded from http://www.sandia.gov/~tgkolda/
feastpack/. The software expects an input degree dis-
tribution. For the “BA (from BA)” graph, we provided
the edgelist from the “BA (m = 5)” graph detailed
above. For the “BA (Arbitrary)” graph we utilized
FEASTPACK to generate an arbitrary degree distribution
based on the following specifications: the maximum de-
gree is < 1000, the target average degree is 15, the target
maximum clustering coefficient is 0.95, and the target
global clustering coefficient is 0.15.

A.2 Graph Dataset Diversity Figure 8 shows that
the selected graphs span a variety of k-core structures,
as defined by the graph degeneracy and the maximum-
core link entropy [15], which is high when the degenerate
core is well-connected with the outer shells.

A.3 Dense Erdos-Rényi Graph Theorem Proof
of Theorem 3.1

Proof. For a weighted adjacency matrix W where w;;
is the weight of the edge between nodes ¢ and j and
embeddings X € R"? the Laplacian Eigenmap loss
function is:

(A1) L6(X) =Y il X@) - X()|* = 2XTLX

Where the row-normalized Laplacian L = D~1(D — A)
and X (i) is the i'" row of X.

To avoid arbitrary scaling and weight nodes accord-
ing to their degrees, the columns of X are constrained
to be orthonormal. If zq,...,x, are the columns of X,
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Figure 8: We chose graph datasets that have diverse
k-core structures. Each graph is plotted based on its
degeneracy vs. its maximum-core link entropy (€ [0, 1]).
Liu et al. [15] define maximum-core link entropy, where
higher values correspond with degenerate cores that are
well-connected with the outer shells; and graphs with
low maximum-core link entropy have degenerate cores
isolated from the rest of the graph. The Y-axis is
the graph’s degeneracy (the largest k in the graph’s k-
cores).



the Laplacian Eigenmap loss can be expressed as:

(A.2) lo(X) =2X"TLX
d
(A.3) = ZZJU?LJJJ»
j=1

If A1, ..., A\, are the non-zero eigenvalues of L in increas-
ing order, where it is assumed that G is connected, the
minimum value of l(X) is 2 Zle A; and the maximum
value is 22?:n—d+1 \; where the ratio of the two can
be lower-bounded as:

(A 4) minxlg(X) _ 25:1 )\z
’ maxxlg(X) Z?:n—d—&-l i
A1
A. > =
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In the case of an Erdos-Rényi graph G, Chung et al.
establish that the eigenvalues of G are almost surely
bounded as:

2

max;||[1 — N\ < o(l)| ———
1= X < 11+ o) =2

More specifically, as n approaches infinity the density
of eigenvalues converges in probability to a semi-circle

distribution centered at 1 with radius [1 +o(1)]ﬁ.
p(n—

Substituting the end points of the eigenvalue distribu-
tion into the loss function we have:
minxlg(X) < A
maxxla(X) = N
pln— 1) — 201+ o(1)]
p(n— 1)+ 2[1+ o(1)]

(A.6) maxxlg(X)

(A7)

As p approaches 1, the ratio approaches 1, showing that
for dense Erdos-Rényi graphs the gap between the best
set of embeddings and the worst diminishes. ]

A.4 Empirical Validation of Theorem 3.1 We
present simulation results that empirically validate The-
orem 3.1, which was proven in Appendix A.3. For
a given value of n € {20,50,100,200,500}, we sam-
pled Erdos-Rényi graphs with increasing values of edge-
density p. Then, for each graph, we calculated the ratio
between the Laplacian Eigenmap loss for the optimal
embeddings where d = 5 and the loss for the least op-
timal, as defined in Equation A.5. Figure 9 shows that
for all values of n, the ratio approaches 1 as edge density
increases. Further, for fixed p, the ratios are larger for
larger values of n, which is consistent with the bound
in Theorem 3.1.

Min vs Max Laplacian Eigenmap Loss as Erdés-Rényi Density Increases
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Figure 9: The above figure empirically validates Theo-
rem 3.1, which states that as the density of an Erdos-
Rényi graph increases, the gap between the best and
worst embeddings diminishes. The y-axis is the ratio
between the Laplacian Eigenmap loss for the optimal
embeddings and the loss for the least optimal embed-
dings. We repeat for multiple values of n, and the error
bars indicate 95% confidence intervals following 100 tri-
als for each value of p.

A.5 Experimental Setup For our experimental re-
sults, we used the following hyperparameter settings:
(o = 10°,8 = 0.1) for STABLE Laplacian Eigenmaps
(except in the case of the Facebook graph for which
a = 10%) and (a = 10) for STABLE LINE. These values
were chosen so that the orders of magnitude for £, and
L are similar. For both instantiations, we use an ini-
tial learning rate of 7 = 0.025 that decreases linearly
with each epoch until the rate reaches zero at the fi-
nal epoch. Furthermore, our link prediction tests with-
hold 10% of links for the test set, and for each graph
and algorithm configuration we ran five trials each with
randomly sampled edge sets. The labels for link pre-
diction are determined by sorting the cosine similarity
scores for all pairs of nodes in the test set and all scores
above a set threshold are labels as positive predictions.
The threshold is set such that the number for positive
predictions matches the number of true positives.

A.6 Further STABLE Results Figure 10a plots the
ratio of STABLE’s average stability error to the base
algorithm’s, where the stability error for a pair 7, j € D
is defined in Equation A.8, across real-world networks.
For both instantiations, ratio is less than 1 indiciating
an improvement in stability. The LINE instantiations



exhibit much less stability error.
Na 2
(A.8) Ip (i, uj) — p (@i, 4;)]
Figure 10b provides a more detailed view of improved
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(b) Detailed view for the Facebook graph

Figure 10: a) For both LINE and Laplacian Eigenmap
instantiations, STABLE exhibits a decrease in stability
error, as defined in Eq. A.8. The figure shows the ra-
tio of STABLE’s average stability error to the base al-
gorithm’s average error. While all ratios are below 1,
the LINE ratios are substantially smaller due to higher
initial stability errors. b) A detailed view of the distri-
bution of stability errors among all pairs of degenerate
nodes in the Facebook graph. For both instantiations,
the distribution of stability errors is closer to zero for
the stable embeddings. That is, STABLE is able to find
stable degenerate-core embeddings.

stability for the Facebook graph. The plots show the
distribution of stability errors for all pairs of nodes in
the degenerate core. The distributions for STABLE are
more left-skewed than the base distributions indicating
lower stability errors.

A.7 Reproducibility We have a GitHub reposi-
tory for this work available at https://github.com/
dliul8/stable.



